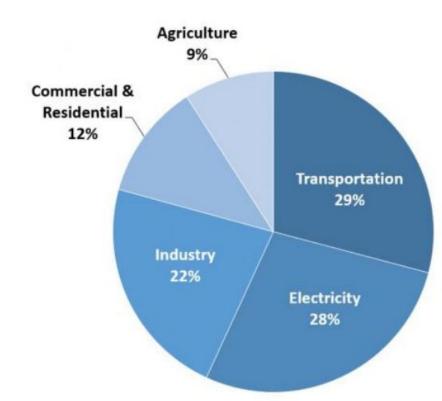
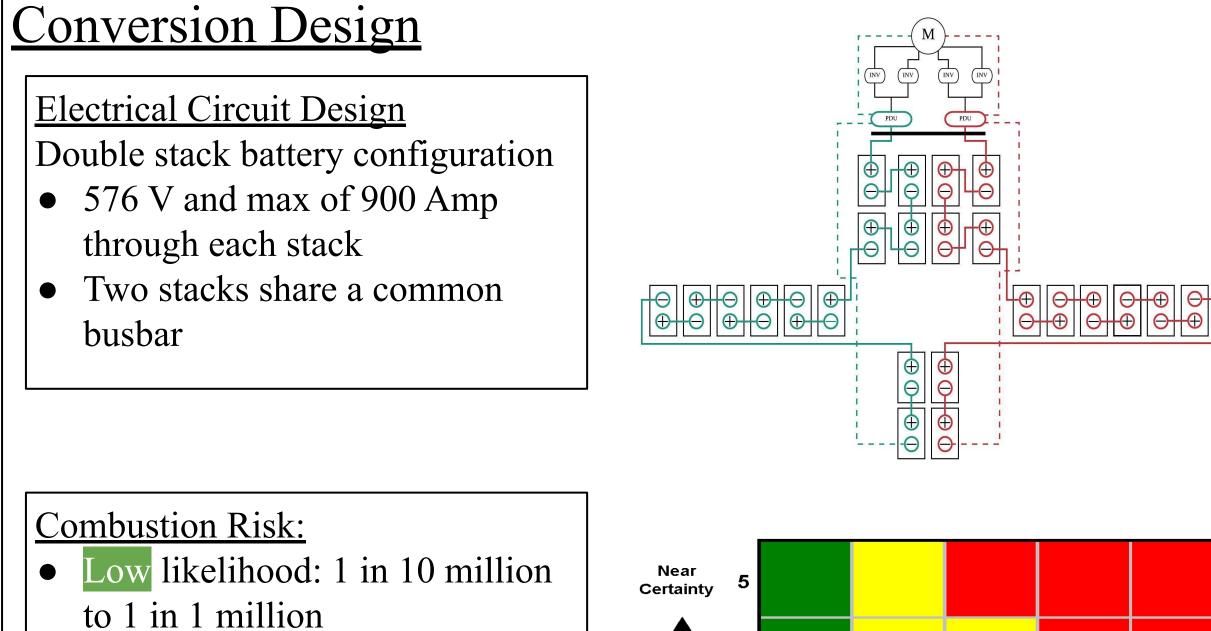


Group AF: All-Electric Air Tractor A. McKee, E. Guo, M. Zody, S. Kim, Z. Williams


MagniX University of Washington



Introduction

Problem Statement: The goal is to provide a conversion plan for transforming a popular gas-powered agricultural airplane, the Air Tractor 502B, to full-electric using our industry sponsor's electric motor, the Magni-500.

Motivation/Background Aviation accounts for almost 11% of transportation CO2 emissions in the U.S. Aviation CO2 emissions are also the fasted growing and hardest to eliminate due the low specific energy of batteries.

Aircraft Performance and Future Outlook

Power Consumption Model

Flight profile developed with the help of agricultural pilot

Battery Configuration	High Endurance	Heavy Payload
Endurance	34 minutes	26.4 minutes
Usable Hopper %	39 %	55 %
Cruise Time	29 minutes	21.4 minutes
Reserve Flight Time	10 minutes	8 minutes

Future Performance

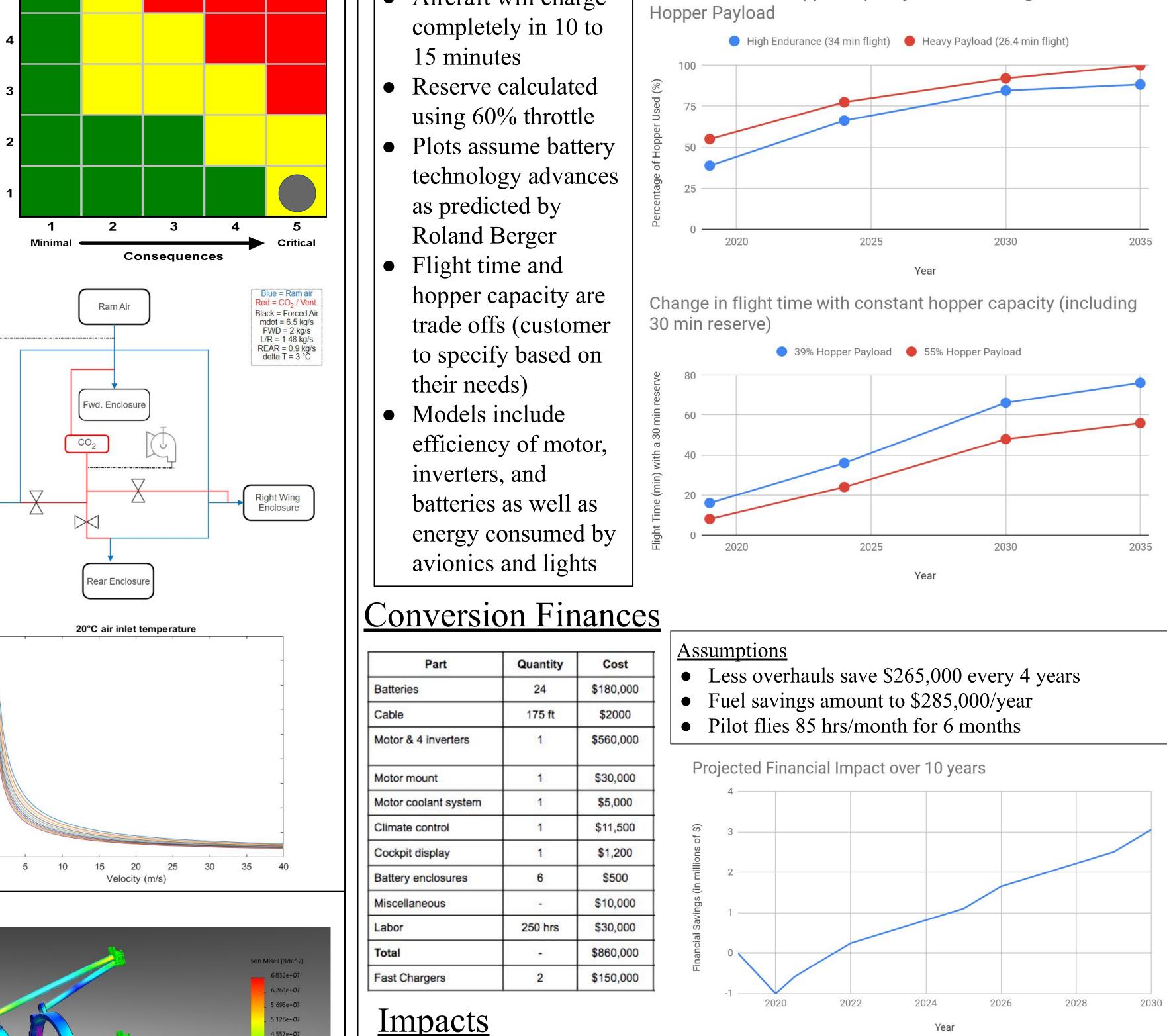
Electric AT502B Hopper Capacity as a Percentage of Standard • Aircraft will charge

Total Emissions in 2017 = 6,457 Million Metric Tons of CO₂

Customer Specification: A successful conversion would involve a total conversion cost lower than the overhaul cost of the current PT6 engine, and the aircraft maintaining its current maneuverability, pilot interface, airframe, and outside structure. However, the resulting mission profile may deviate from the typical profile of the current model.

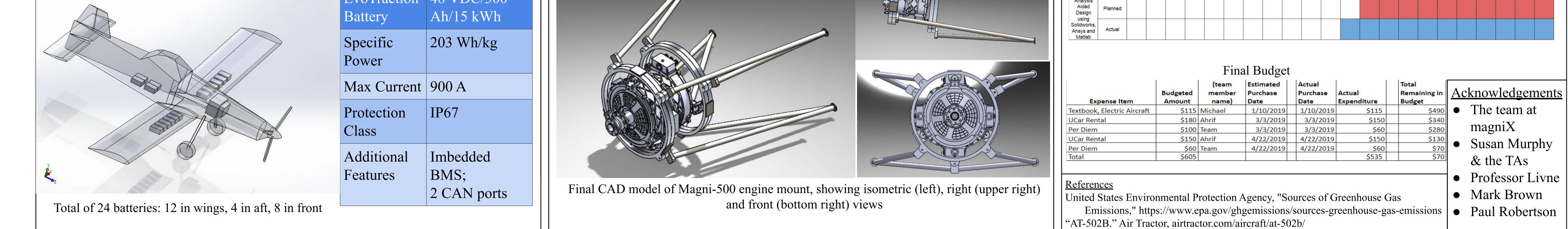
Testbed Plane

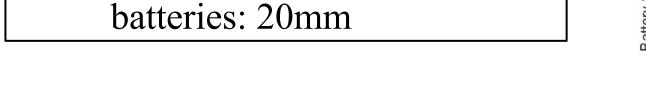
Maximum	Empty	Hopper	Wing	Typical	Range
Takeoff Weight	Weight	Capacity	Span	Use	
9400 lbs.	4546 lbs.	500 gal 3850 lbs.	52 feet	Agricultural Spraying	620 miles


Regulations

Batteries/Electrification

- AC 20-184
- Engine Mount
- FAA FAR Part 23.303: Factor of Safety
- FAA FAR Part 23.361: Engine Torque
- FAA FAR Part 23.371: Gyroscopic Loads
- FAA FAR Part 23.561: Ultimate Inertial Forces


- Roadmap for Certification • Commercial use requires a 30 minute reserve
- Experimental certification until battery technology improves • Commercial use 5-10 years out
- Causes: Puncture, impact, Not Likely vibration, overcharging and over heat Consequences AC/GSE Thermal Management Fwd. Enclosure • Passive air cooling CO2 • Ram air used for cooling ∇ batteries in-flight Left Wing Enclosure • GSE used for cooling during ground operations • Upper diagram shows aircraft Rear Enclosure level air cooling schematic 20°C air inlet temperature • Plot displays sufficient cooling of batteries if air velocity Q 140 between the batteries is greater 120 than 3 m/s 100 Width of channel between


Engine Comparison

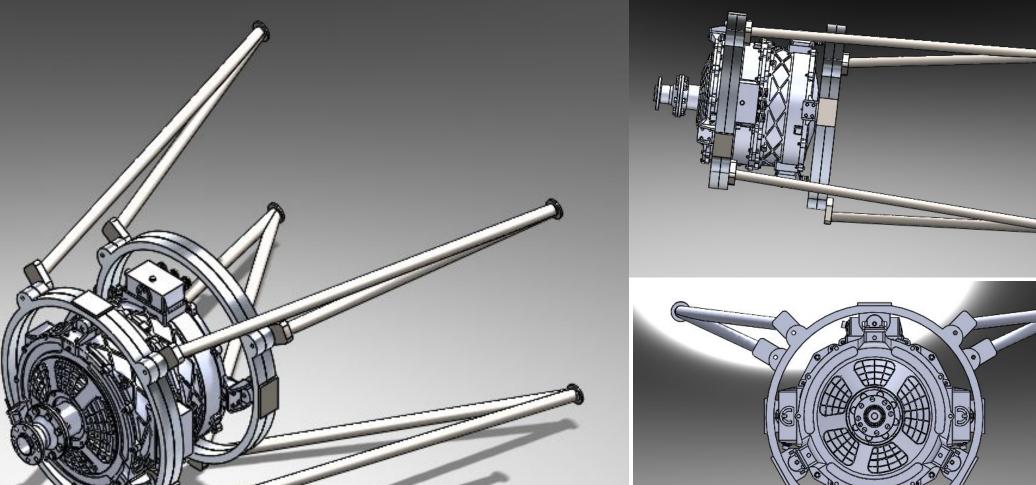
Parameter	PT6A-15AG	Magni500
Weight	315 lbs	282 lbs
Power	680 shp	750 shp
Length	~61 in	~21 in
Diameter	~17.1 in (based on Quincy measurements)	~21.5 in
Operating Speed	2200 RPM	1900-3000 RPM
Image		

Power Supply

EvoTraction Battery	48 VDC/300 Ah/15 kWh
Specific Power	203 Wh/kg
Max Current	900 A
Protection Class	IP67
	T 1 11 1

Mounting the Engine	
---------------------	--

• Dire consequences: Thermal


combustion persists

runaway, external oxygen supply

for combustion not necessary,

Custom Engine Mount • Analyzed against gyroscopic loading, engine torque, and ultimate inertial forces • Yield factor of safety ~ 1.63 to 8.19

• Constructed out of 6061-T6 Aluminum and 4130 Alloy Chromoly Steel

	10	15 Ve	20 locity (m	25 n/s)	30	35	40
						von	Mises (N/m^2)
and the second							6.832e+07 6.263e+07
-							5.695e+07
	5						5.126e+07
			Ø. 1				4.557e+07
	1-1-			- R A		-	3.989e+07
			-				3.420e+07
							2.851e+07
							2.283e+07
							1.714e+07
+07			-				1.145e+07
+07							5.767e+06
	_						_ JATORETUU

Von Mises stress plot of nominal torque simulation

Immediate: Experimental and private operations <u>Future</u>: Limited commercial use in 5-7 years, widespread use in 10-15 years

Schedule and Budget

	Date	1/7	1/14	1/21	1/28	2/4	2/11	2/18	2/25	3/4	3/11	3/18	3/25	4/1	4/8	4/15	4/22	4/29	5/6	5/13	5/20	5/27	6/3
	Week	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
Preliminary	Planned																						
Design	Actual																						
Analysis Aided Design	Planned						2																
using Solidworks, Ansys and Matlab	Actual																						

Expense Item	Budgeted Amount	(team member name)	Estimated Purchase Date	Actual Purchase Date	Actual Expenditure	Total Remaining in Budget	Acknowledgements
book, Electric Aircraft	\$115	Michael	1/10/2019	1/10/2019		\$490	• The team at
r Rental	\$180	Ahrif	3/3/2019	3/3/2019	\$150	\$340	
Diem	\$100	Team	3/3/2019	3/3/2019	\$60	\$280	magniX
r Rental	\$150	Ahrif	4/22/2019	4/22/2019	\$150	\$130	Cucon Mumbu
Diem	\$60	Team	4/22/2019	4/22/2019	\$60	\$70	• Susan Murphy
al	\$605				\$535	\$70	er the TAc

